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Harmonic starlikeness and convexity of integral
operators generated by Poisson distribution series

Saurabh Porwal and Divesh Srivastava

Abstract. The purpose of the present paper is to establish connec-
tions between various subclasses of harmonic univalent functions by
applying certain integral operator involving the Poisson distribution se-
ries. To be more precise, we investigate such connections with harmonic
starlike and harmonic convex mappings in the plane.

1. Introduction

Let A denote the class of functions f(z) of the form

(1) f(z) = z +
∞∑
n=2

anz
n

which are analytic in the open unit disc U = {z : z ∈ C and |z| < 1} and
satisfy the normalization condition f(0) = f ′(0)−1 = 0. Further, we denote
by S the subclass of A consisting of functions of the form (1) which are also
univalent in U . A continuous complex-valued function f = u + iv is said
to be harmonic in a simply-connected domain D if both u and v are real
harmonic in D. In any simply-connected domain we can write f = h + g ,
where h and g are analytic in D. We call h the analytic part and g the co-
analytic part of f . A necessary and sufficient condition for f to be locally
univalent and sense-preserving in D is that

∣∣∣h′(z)∣∣∣ > ∣∣∣g′(z)∣∣∣ , z ∈ D. See
Clunie and Sheil-Small [4], for more basic results on harmonic functions one
may refer to the following standard introductory text book by Duren [6],
(see also [1]).

Let H be the family of all harmonic functions of the form f = h + g,
where

(2) h(z) = z +

∞∑
n=2

Anz
n, g(z) =

∞∑
n=1

Bnz
n, |B1| < 1.

2000 Mathematics Subject Classification. Primary: 30C45.
Key words and phrases. Harmonic, Univalent functions, Poisson Distribution Series.

c©2017 Mathematica Moravica
51



52 Harmonic starlikeness and convexity of integral operators. . .

Denote by SH the subclass of H functions f = h + g that are harmonic
univalent and sense-preserving in the open unit disk U = {z : |z| < 1} for
which f (0) = fz (0)− 1 = 0.

Note that SH reduces to class S of normalized analytic univalent functions
if the co-analytic part of its member is zero. In fact, Clunie and Sheil-Small
[4] investigated the class SH . We also let the subclass S0

H of SH

S0
H =

{
f = h+ g ∈ SH : g′ (0) = B1 = 0

}
.

The classes S0
H and SH were first studied in [4].

A function f(z) of the form (2) in SH is said to be harmonic starlike of
order α, (0 ≤ α < 1) in U , if and only if

(3)
∂

∂θ
{arg f(z)} > α, z ∈ U,

and is said to be harmonic convex of order α, (0 ≤ α < 1) in U , if and only
if

(4)
∂

∂θ

{
arg

(
∂

∂θ
f(z)

)}
> α, z ∈ U.

The classes of all harmonic starlike functions of order α and harmonic
convex functions of order α are denoted by S∗H(α) and KH(α), respectively.
These classes have been extensively studied by Jahangiri [8].

For α = 0, these classes S∗H(α) and KH(α) were denoted by S∗H and
KH respectively. These classes were studied in detail by Silverman [16] and
Silverman and Silvia [17], (see also [3]). Further, we let K0

H , S∗,0H and C0
H

denote the subclasses of S0
H of harmonic functions which are, respectively,

convex, starlike and close-to-convex in U . For definitions and properties of
these classes, one may refer to ([1], [4]) or [6].

Very recently, Porwal [12] introduce a power series whose coefficients are
probabilities of Poisson distribution

(5) K (m, z) = z +

∞∑
n=2

mn−1

(n− 1)!
e−mzn.

By ratio test the radius of convergence of above series is infinity. Using
the above series they obtain some interesting results on certain classes of
analytic univalent functions. Some other interesting results also found in
[5], [9] and [10], (see also [7], [11]).

The convolution (or Hadamard product) of two series f(z) =
∑∞

n=0 anz
n

and g(z) =
∑∞

n=0 bnz
n is defined as the power series

(f ∗ g)(z) =
∞∑
n=0

anbnz
n.

Using the definition (5), we introduce the integral operator I : H → H
by
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I(f) ≡ I(m1,m2)f(z) = H(z) +G(z),

where

(6) H(z) = h(z) ∗
∫ z

0

K(m1, t)

t
dt, G(z) = g(z) ∗

∫ z

0

K(m2, t)

t
dt,

or equivalently

(7) H(z) = z +

∞∑
n=2

e−m1mn−1
1

n!
Anz

n, G(z) = B1z +

∞∑
n=2

e−m2mn−1
2

n!
Bnz

n,

where ∗ denotes the usual Hadamard product or convolution of two power
series. The hypergeometric series plays an important role in Geometric
Function theory. Recently Ahuja [2] studied the harmonic starlikeness and
convexity of integral operators generated by hypergeometric series. Ana-
logues to these results Porwal [13],(see also [14]-[15], [18]), studied the har-
monic starlikeness and convexity of integral operators generated by gen-
eralized Bessel functions. In the present paper motivated with the above
mentioned work we establish a number of connections between the classes
S∗H(α), KH(α), K0

H , S∗,0H , C0
H by applying the integral operator I.

2. Preliminary Lemmas

To prove our main results we shall require the following lemmas.

Lemma 2.1. ([6]) If f = h+ g ∈ K0
H where h and g are given by (2) with

B1 = 0, then

|An| ≤
n+ 1

2
, |Bn| ≤

n− 1

2
.

Lemma 2.2. ([8]) Let f = h+ g be given by (2). If for some α(0 ≤ α < 1)
and the inequality

(8)
∞∑
n=2

(n− α) |An|+
∞∑
n=1

(n+ α) |Bn| ≤ 1− α,

is satisfied, then f is harmonic, sense-preserving, univalent functions in U
and f ∈ S∗H(α).

Define TS∗H(α) = S∗H(α)∩T and TKH(α) = KH(α)∩T , where T consists
of the functions f = h+ g in SH so that h(z) and g(z) are of the form

(9) h(z) = z −
∞∑
n=2

|An|zn, g(z) =
∞∑
n=1

|Bn|zn, |B1| < 1.

Remark 2.1. In [8], it is also shown that f = h + g given by (9) is in the
family TS∗H(α), if and only if the coefficient condition (8) holds. Moreover,
if f ∈ TS∗H(α), then

(10) |An| ≤
1− α
n− α

, n ≥ 2, |Bn| ≤
1− α
n+ α

, n ≥ 1.
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Lemma 2.3. ([8]) Let f = h+ g be given by (2). If for some α(0 ≤ α < 1)
and the inequality

(11)
∞∑
n=2

n(n− α) |An|+
∞∑
n=1

n(n+ α) |Bn| ≤ 1− α,

is satisfied, then f is harmonic, sense-preserving univalent functions in U
and f ∈ KH(α).

Remark 2.2. In [8], it is also shown that f = h + g given by (9) is in the
family TKH(α), if and only if the coefficient condition (11) holds. Moreover,
if f ∈ TKH(α), then

(12) |An| ≤
1− α

n (n− α)
, n ≥ 2, |Bn| ≤

1− α
n (n+ α)

, n ≥ 1.

Lemma 2.4. ([6]) Let f = h+ g ∈ S∗,0H or C0
H where h and g are given by

(2) with B1 = 0, then

|An| ≤
(2n+ 1)(n+ 1)

6
, |Bn| ≤

(2n− 1)(n− 1)

6
, n ≥ 2.

3. Main Results

In our first result, we determine conditions which guarantee that the in-
tegral operator I is harmonic starlike in U .

Theorem 3.1. If 0 ≤ α < 1, mj > 0 for j = 1, 2. Also, suppose f = h+g ∈
H is given by (2). If the inequalities

(i)

∞∑
n=2

|An|+
∞∑
n=1

|Bn| ≤ 1, |B1| < 1

(ii)e−m1 + e−m2 ≥ 1 + |B1|
are satisfied, then the integral operator I is sense-preserving, harmonic uni-
valent and maps H in to S∗H .

Proof. Note that
I(m1,m2)f(z) = H(z) +G(z),

where H(z) and G(z) are given by (7). In order to show that I is locally
univalent and sense-preserving it suffices to show that |H ′(z)| − |G′(z)| > 0
in U . Using the condition (i), we have

|H ′(z)| − |G′(z)|

> 1−
∞∑
n=2

n
e−m1mn−1

1

n!
−
∞∑
n=2

n
e−m2mn−1

2

n!
− |B1|

= 1− |B1| − e−m1 (em1 − 1)− e−m2 (em2 − 1)

= 1− |B1| −
(
1− e−m1

)
−
(
1− e−m2

)
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= e−m1 + e−m2 − 1− |B1|
≥ 0, from (ii).

To show that I(f) is univalent in U , we follow the method of Theorem 1 in
[8]. That is, for z1 6= z2 in U , it suffices to prove that

(13) <f(z2)− f(z1)
z2 − z1

>

∫ 1

0

(
<H ′(z(t))− |G′(z(t))|

)
dt.

Since from the given condition (i), we have

<H ′(z)− |G′(z)| > 1−
∞∑
n=2

n
e−m1mn−1

1

n!
− |B1| −

∞∑
n=2

n
e−m2mn−1

2

n!

it follows from the given hypothesis that the last inequality is positive.
Therefore, from the inequality (13) we have

<f(z2)− f(z1)
z2 − z1

> 0.

This proves the univalence of I(f).
In order to prove that I(f) ∈ S∗H ≡ S∗H(0), it suffices to show that P1 ≤ 1,

because of Lemma 2.2, where

P1 =
∞∑
n=2

n
e−m1mn−1

1

n!
|An|+ |B1|+

∞∑
n=2

n
e−m2mn−1

2

n!
|Bn|.

Since |An| ≤ 1, |Bn| ≤ 1, ∀n ≥ 2, because of given condition (i), we obtain

P1 ≤
∞∑
n=2

e−m1mn−1
1

(n− 1)!
+ |B1|+

∞∑
n=2

e−m2mn−1
2

(n− 1)!

=
(
1− e−m1

)
+ |B1|+

(
1− e−m2

)
≤ 1, from (ii).

This completes the proof of Theorem 3.1. �

We next find a sufficient condition for which the integral operator I maps
K0

H into S∗H(α).

Theorem 3.2. If mj > 0 for j = 1, 2. If for some α(0 ≤ α < 1), the
inequality

m1 +m2 + (2− α)
(
1− e−m1

)
+ α

(
1− e−m2

)
− α

m1

(
1− e−m1 −m1e

−m1
)

− α

m2

(
1− e−m2 −m2e

−m2
)
≤ 2(1− α)

is satisfied, then
I(K0

H) ⊂ S∗H(α).
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Proof. Let f = h + g ∈ K0
H where h and g are given by (2) with B1 = 0.

We need to prove that I(f) = H + G ∈ S∗H (α) where H and G are given
by (7) with B1 = 0 are analytic functions in U . In view of Lemma 2.2, it is
enough to show that P2 ≤ 1− α, where

(14) P2 =
∞∑
n=2

(n− α)
∣∣∣∣e−m1mn−1

1

n!
An

∣∣∣∣+ ∞∑
n=2

(n+ α)

∣∣∣∣e−m2mn−1
2

n!
Bn

∣∣∣∣ .
Applying Lemma 2.1, we have

P2 ≤
1

2

[ ∞∑
n=2

(n− α)(n+ 1)
e−m1mn−1

1

n!
+
∞∑
n=2

(n+ α)(n− 1)
e−m2mn−1

2

n!

]

=
1

2

[ ∞∑
n=2

{n(n− 1) + n(2− α)− α} e
−m1mn−1

1

n!
+

∞∑
n=2

{n(n− 1) + nα− α} e
−m2mn−1

2

n!

]

=
1

2

[ ∞∑
n=2

e−m1mn−1
1

(n− 2)!
+ (2− α)

∞∑
n=2

e−m1mn−1
1

(n− 1)!
− α

∞∑
n=2

e−m1mn−1
1

n!

+

∞∑
n=2

e−m2mn−1
2

(n− 2)!
+ α

∞∑
n=2

e−m2mn−1
2

(n− 1)!
− α

∞∑
n=2

e−m2mn−1
2

n!

]

=
1

2

[
m1 +m2 + (2− α)

(
1− e−m1

)
+ α

(
1− e−m2

)
−

α

m1

(
1− e−m1 −m1e

−m1
)
− α

m2

(
1− e−m2 −m2e

−m2
)]

The last expression is bounded above by (1− α) by the given hypothesis.
Thus the proof of Theorem 3.2 is established. �

Theorem 3.3. If mj > 0, for (j = 1, 2). If for some α(0 ≤ α < 1) and the
inequality

2m2
1 + (9− 2α)m1 + (6− 5α)

(
1− e−m1

)
− α

m1

(
1− e−m1 −m1e

−m1
)

+ 2m2
2 + (2α+ 3)m2 − α

(
1− e−m2

)
− α

m2

(
1− e−m2 −m2e

−m2
)

≤ 6(1− α)

is satisfied then I(S∗,0H ) ⊂ S∗H(α) and I(C0
H) ⊂ S∗H(α).

Proof. Let f = h + g ∈ S∗,0H where h and g are given by (2) with B1 = 0.
We need to prove that I(f) = H + G ∈ S∗H (α) where H and G are given
by (7) with B1 = 0 are analytic functions in U . In view of Lemma 2.2, it is
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enough to show that P2 ≤ 1− α, where

P2 =

∞∑
n=2

(n− α)
∣∣∣∣e−m1mn−1

1

n!
An

∣∣∣∣+ ∞∑
n=2

(n+ α)

∣∣∣∣e−m2mn−1
2

n!
Bn

∣∣∣∣ .
Applying Lemma 2.4, we have

P2 ≤
1

6

[ ∞∑
n=2

(n− α)(2n+ 1)(n+ 1)
e−m1mn−1

1

n!
+

∞∑
n=2

(n+ α)(2n− 1)(n− 1)
e−m2mn−1

2

n!

]

=
1

6

[ ∞∑
n=2

{2n(n− 1)(n− 2) + (9− 2α)n(n− 1) + (6− 5α)n− α} e
−m1mn−1

1

n!

+

∞∑
n=2

{2n(n− 1)(n− 2) + (2α+ 3)n(n− 1)− αn+ α} e
−m2mn−1

2

n!

]

=
1

6

[
e−m1

{
2
∞∑
n=2

mn−1
1

(n− 3)!
+ (9− 2α)

∞∑
n=2

mn−1
1

(n− 2)!
+ (6− 5α)

∞∑
n=2

mn−1
1

(n− 1)!
− α

∞∑
n=2

mn−1
1

n!

}

+e−m2

{
2
∞∑
n=2

mn−1
2

(n− 3)!
+ (2α+ 3)

∞∑
n=2

mn−1
2

(n− 2)!
− α

∞∑
n=2

mn−1
2

(n− 1)!
+ α

∞∑
n=2

mn−1
2

n!

}]

=
1

6

[{
2m2

1 + (9− 2α)m1 + (6− 5α)
(
1− e−m1

)
− α

m1

(
1− e−m1 −m1e

−m1
)}

+

{
2m2

2 + (2α+ 3)m2 − α
(
1− e−m2

)
+

α

m2

(
1− e−m2 −m2e

−m2
)}]

≤ 1− α

by the given hypothesis.
This completes the proof of Theorem 3.3. �

Theorem 3.4. If mj > 0, for (j = 1, 2) then I(TS∗H(α)) ⊂ TS∗H(α), if and
only if the inequality
(15)

1

m1

(
1− e−m1 −m1e

−m1
)
+

1

m2

(
1− e−m2 −m2e

−m2
)
≤ 1− 1 + α

1− α
|B1|

is satisfied.

Proof. Let f = h + g ∈ TS∗H(α). where h and g are given by (9), we need
to prove that the integral operator

I(f)(z) = z −
∞∑
n=2

e−m1mn−1
1

n!
|An|zn + |B1|z +

∞∑
n=2

e−m2mn−1
2

n!
|Bn|zn

is in TS∗H(α), if and only if P3 ≤ 1− α, where

P3 =
∞∑
n=2

(n−α)e
−m1mn−1

1

n!
|An|+ (1+α)|B1|+

∞∑
n=2

(n+α)
e−m2mn−1

2

n!
|Bn| .
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Using Remark 2.1, we obtain

P3 ≤ (1− α)

[ ∞∑
n=2

e−m1mn−1
1

n!
+

∞∑
n=1

e−m2mn−1
2

n!

]
+ (1 + α)|B1|

= (1− α)
[

1

m1

(
1− e−m1 −m1e

−m1
)
+

1

m2

(
1− e−m2 −m2e

−m2
)]

+ (1 + α)|B1|
≤ 1− α

by the given condition and this completes the proof of the theorem. �

We next explore a sufficient condition which ensures that I maps K0
H in

to KH(α).

Theorem 3.5. If mj > 0, for (j = 1, 2). If for some α(0 ≤ α < 1), the
inequality

em1
(
m2

1 +m2
2 + (4− α)m1 + (2− α)m2

)
≤ 2(1− α)

is satisfied then I(K0
H) ⊂ KH(α).

Proof. Let f = h + g ∈ K0
H where h and g are given by (2) with B1 = 0.

We need to prove that I(f) = H + G ∈ KH (α) where H and G are given
by (7) with B1 = 0 are analytic functions in U . In view of Lemma 2.3, it is
enough to show that P4 ≤ 1− α, where

P4 =

∞∑
n=2

n(n− α)
∣∣∣∣e−m1mn−1

1

n!
An

∣∣∣∣+ ∞∑
n=2

n(n+ α)

∣∣∣∣e−m2mn−1
2

n!
Bn

∣∣∣∣ .
Applying Lemma 2.1, we have

P2 ≤
1

2

[ ∞∑
n=2

(n− α)(n+ 1)
e−m1mn−1

1

(n− 1)!
+
∞∑
n=2

(n+ α)
e−m2mn−1

2

(n− 2)!

]

=
1

2

[ ∞∑
n=2

{(n− 1)(n− 2) + (4− α)(n− 1) + 2(1− α)} e
−m1mn−1

1

(n− 1)!

+
∞∑
n=2

{(n− 2) + (2 + α)} e
−m2mn−1

2

(n− 2)!

]

=
1

2

[
m2

1 + (4− α)m1 + 2 (1− α)
(
1− e−m1

)
+m2

2 + (2− α)m2

]
≤ 1− α

by the given hypothesis.
Thus the proof of Theorem 3.5 is established. �

The proof of following theorems are similar to previous theorems so we
state only the results.
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Theorem 3.6. If mj > 0 for (j = 1, 2) then I(TS∗H(α)) ⊂ TKH(α), if and
only if the inequality

e−m1 + e−m2 ≥ 1 +
1 + α

1− α
|B1|

is satisfied.

Theorem 3.7. If mj > 0 for (j = 1, 2) then I(TKH(α)) ⊂ TKH(α), if and
only if the inequality (15) is satisfied.

Theorem 3.8. If mj > 0 for (j = 1, 2). If for some α(0 ≤ α < 1), the
inequality

em1
[
2(m3

1 +m3
2) + (15− 2α)m2

1 + 3(8− 3α)m1

+(2α+ 9)m2
2 + 3(2 + α)m2

]
≤ 6(1− α)

is satisfied then I(S∗,0H ) ⊂ KH(α) or I(C0
H) ⊂ KH(α).
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